Regional passive ventricular stress-strain relations during development of altered loads in chick embryo.
نویسندگان
چکیده
Mechanical load influences embryonic ventricular growth, morphogenesis, and function. However, little is known about changes in regional passive ventricular properties during the development of altered mechanical loading conditions in the embryo. We tested the hypothesis that regional mechanical loads are a critical determinant of embryonic ventricular passive properties. We measured biaxial passive right and left ventricular (RV and LV, respectively) stress-strain relations in chick embryos at Hamburger-Hamilton stages 21 and 27 after conotruncal banding (CTB) to increase biventricular pressure load or left atrial ligation (LAL) to reduce LV volume load and increase RV volume load. In the RV, wall strains at end-diastolic (ED) pressure normalized whereas ED stresses increased after either CTB or LAL during development. In the left ventricle, both ED strain and stress normalized after CTB, whereas both remained reduced with significantly increased myocardial stiffness after LAL. These results suggest that the embryonic ventricle adapts to chronically altered mechanical loading conditions by changing specific RV and LV passive properties. Thus regional mechanical load has a critical role during cardiogenesis.
منابع مشابه
Residual strain in the ventricle of the stage 16-24 chick embryo.
Residual stress and strain, i.e., the stress and strain remaining in a solid when all external loads are removed, may be produced in biological tissues by differential growth. During cardiac development, residual stress and strain may play a role in cardiac morphogenesis by affecting ventricular wall stress. After a transmural radial cut, a passive ventricular cross section opens into a sector,...
متن کاملMaturation of end-systolic stress-strain relations in chick embryonic myocardium.
The embryonic myocardium increases functional performance geometrically during cardiac morphogenesis. We investigated developmental changes in the in vivo end-systolic stress-strain relations of embryonic chick myocardium in stage 17, 21, and 24 white Leghorn chick embryos (n = 10 for each stage). End-systolic stress-strain relations were linear in all developmental stages. End-systolic strain ...
متن کاملMicrotubule involvement in the adaptation to altered mechanical load in developing chick myocardium.
Mechanical load regulates ventricular growth, function, and structure from the earliest stages of cardiac morphogenesis through senescence. Dramatic changes in cardiac form and function have been defined for developing cardiovascular systems, and changes in mechanical loading conditions can produce structural malformations such as left heart hypoplasia. To date, relatively little is known regar...
متن کاملPressure overload alters stress-strain properties of the developing chick heart.
As a first step in investigating a control mechanism regulating stress and/or strain in the embryonic heart, this study tests the hypothesis that passive mechanical properties of left ventricular (LV) embryonic myocardium change with chronically increased pressure during the chamber septation period. Conotruncal banding (CTB) created ventricular pressure overload in chicks from Hamburger-Hamilt...
متن کاملEnd-systolic myocardial stiffness is a load-independent index of contractility in stage 24 chick embryonic heart.
Cardiac morphogenesis and function are interrelated during cardiovascular development. We evaluated the effects of acute alteration of loading condition to chick embryonic ventricular contractility using end-systolic myocardial stiffness based on the incremental elastic modulus concept. End-systolic stress-strain relations including geometric factor and end-systolic myocardial stiffness were de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 282 6 شماره
صفحات -
تاریخ انتشار 2002